
• Geophysical DA problems are high-dimensional, and can be quite nonlinear.

• Challenges:
• Extremely high-dimensional problem⇒ need a parallelizable algorithm
• Can’t afford ‘too many’ particles (typically 100 is a lot), and therefore

‘sampling error’ issue⇒ require localization (how?)

• Goal: develop a scalable algorithm for PFF and conduct an OSSE to test this
PFF algorithm in an simplified atmospheric model
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Introduction – Particle Flow Filter (PFF) OSSE setup

• Particle filter (PF) is a fully nonlinear data assimilation (DA) method, while it is
known to suffer from the weight degeneracy issue in a high-dimensional system.

• The Particle Flow Filter (PFF), avoids the weight by construction, has shown the
potential to solve a high-dimensional nonlinear DA problem a.
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Motivations

Data Assimilation Research Testbed (DART)

• DART is a open-source community software for ensemble DA, which includes
interfaces to a variety of geophysical models and observation operators.

• The core DA algorithm is based on the two-step ensemble filtering b,c framework:

a new variable “z” is introduced that satisfies
Examples of “z”:

1) 𝑧 = 𝐻 𝐱
2) 𝐳 = the “nontrivial” input variables to 𝐻(𝐳𝑦)

“inner domain”

• 1st step: use the PFF to draw     from  

• 2nd step: draw from              

⋯

• A new algorithm for PFF (called PFF-DART) is proposed as follows (note ):

So 

and  

We assume Gaussian             so the linear regression update is used to draw x, and 
the “increment localization” (the default in DART) can be naturally applied here.

• The “Bgrid” model (var = U, V, T, ps)
• 1 year cycling DA, with 300 obs every

day (black circles, not located on grid
points, only ps is observed)

• Compare: noDA, EAKF, PFF-DART
• 25 ensemble members, no inflation

(default), the same localization

Case I – linear and Gaussian obs

obs:                                       + Gaussian noise N(0,1) (hPa)

Case II – linear and non-Gaussian obs

obs: same as Case I, but with a state-dependent noise

the distribution of the posterior mean bias

Case III – nonlinear and non-Gaussian obs

obs:                                                                   with noise                               (              )

EAKF with RTPS

EAKF with the best tuned
inflation is worse than the PFF
without any inflation.

Inflation does not address the
issues from the nonlinearities.

Conclusions

• We develop an algorithm for the PFF in DART that can
1) run in parallel for high-dimensional, spatially extended geophysical models
2) efficiently apply the localization (via the existing DART modules) to reduce

the sampling errors due to the small number of particles
• The PFF performs comparably to EAKF for linear and Gaussian observations,

while the PFF outperforms EAKF for nonlinear and non-Gaussian observations.

(can run in parallel)
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