An observing system simulation experiment (OSSE) using the Particle Flow Filter (PFF) in a high-dimensional geophysical system in the Data Assimilation Research Testbed (DART)

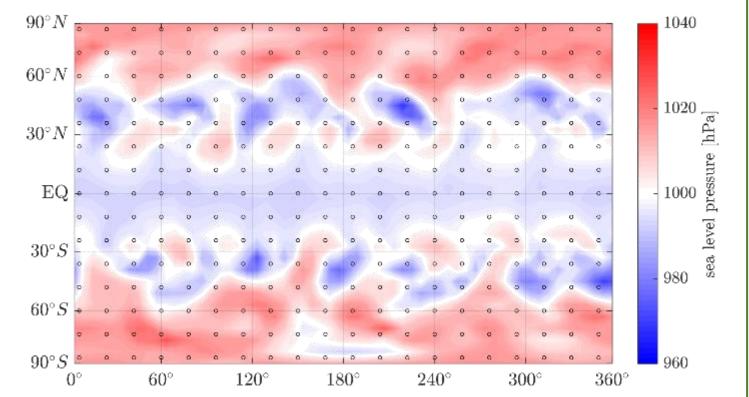
Chih-Chi Hu^{1,2}, Peter Jan van Leeuwen², Jeffrey Anderson³ ¹Princeton University, Princeton, NJ, USA ²Colorado State University, Fort Collins, CO, USA ³National Center for Atmospheric Research, Boulder, CO, USA

Introduction – Particle Flow Filter (PFF)

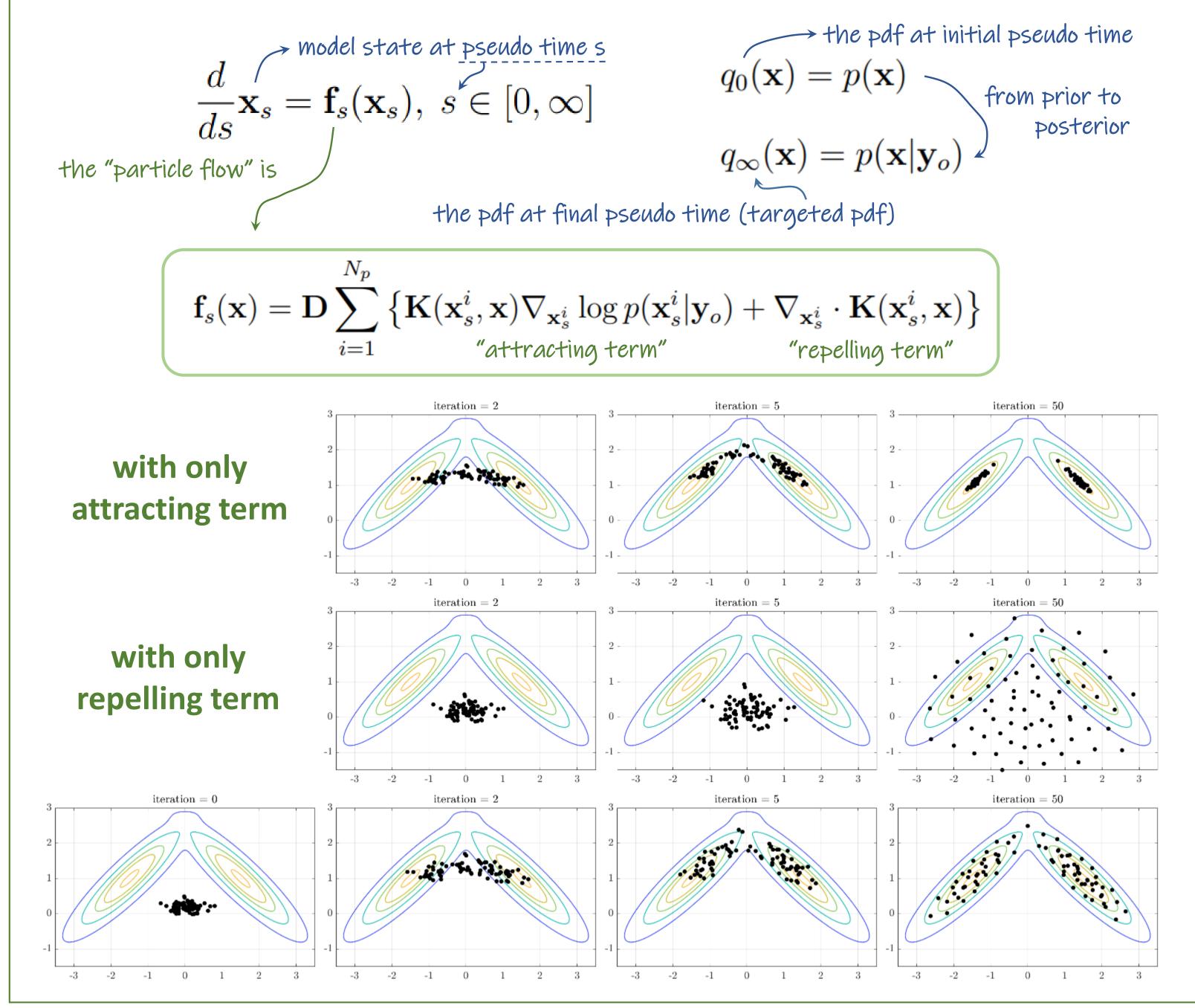
- Particle filter (PF) is a fully nonlinear data assimilation (DA) method, while it is known to suffer from the weight degeneracy issue in a high-dimensional system.
- The Particle Flow Filter (PFF), avoids the weight by construction, has shown the

OSSE setup

- The "Bgrid" model (var = U, V, T, ps)
- 1 year cycling DA, with 300 obs every day (black circles, not located on grid points, only ps is observed)

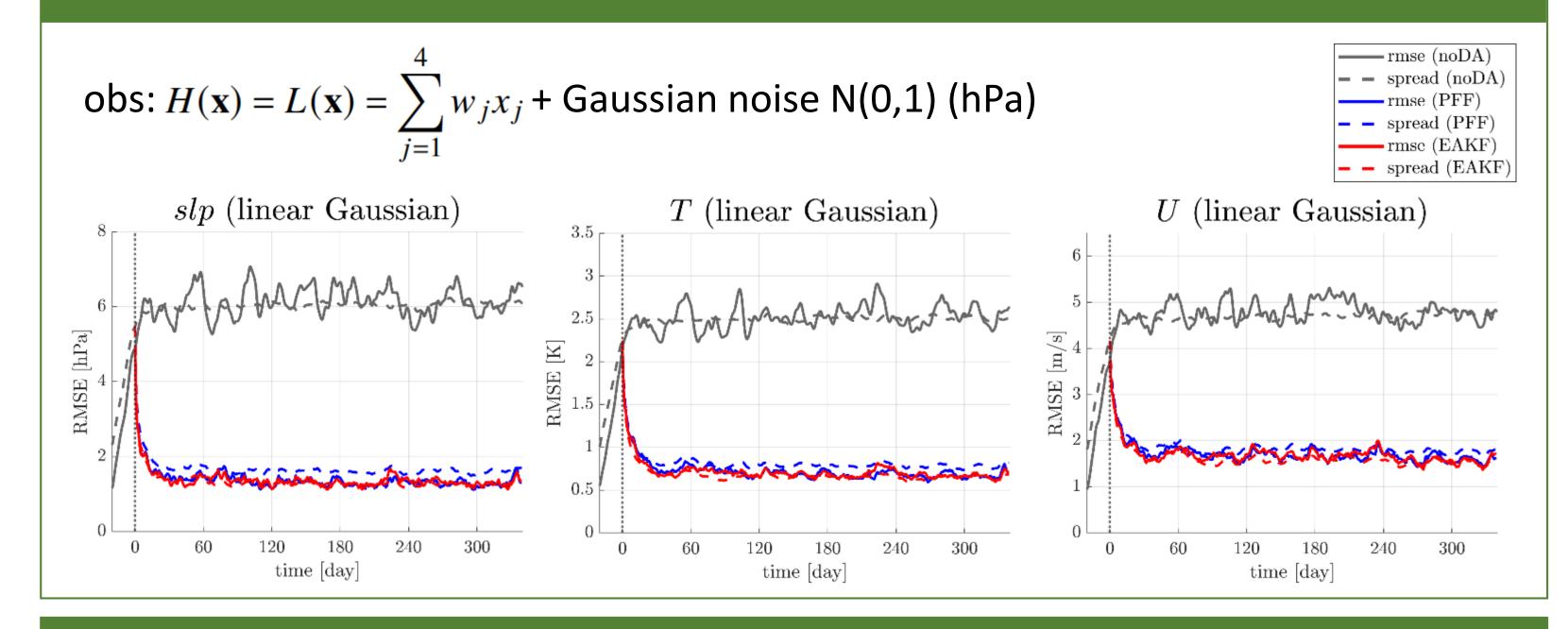


potential to solve a high-dimensional nonlinear DA problem ^a.



- Compare: noDA, EAKF, PFF-DART
- 25 ensemble members, no inflation (default), the same localization

Case I – linear and Gaussian obs



Case II – linear and non-Gaussian obs

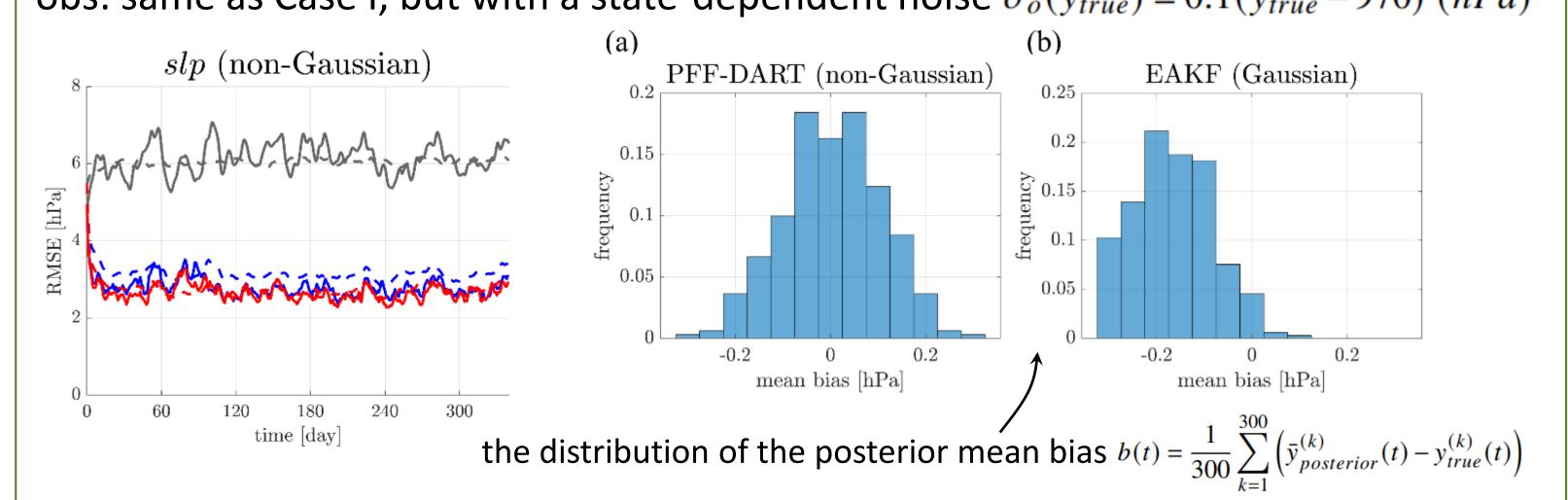
obs: same as Case I, but with a state-dependent noise $\sigma_o(y_{true}) = 0.1(y_{true} - 970)$ (hPa)

Motivations

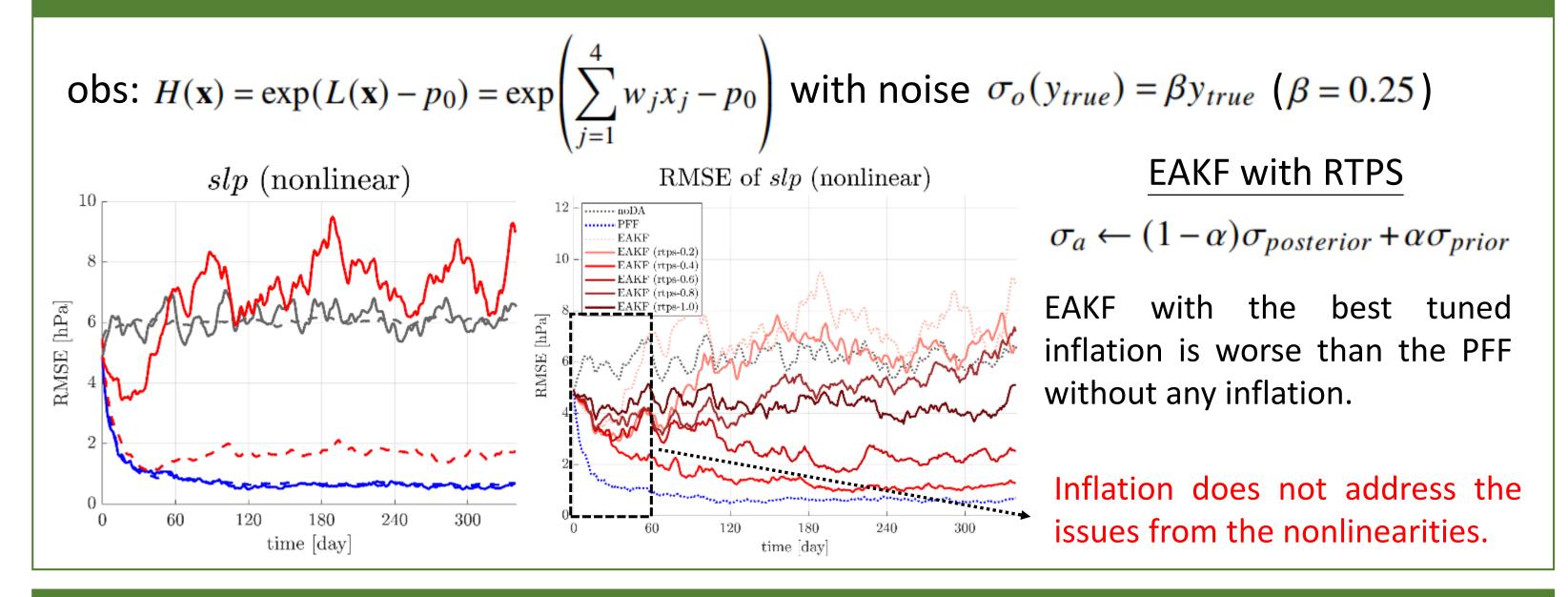
- Geophysical DA problems are high-dimensional, and can be quite nonlinear.
- Challenges:
 - Extremely high-dimensional problem \Rightarrow need a *parallelizable* algorithm
 - Can't afford 'too many' particles (typically 100 is a lot), and therefore 'sampling error' issue \Rightarrow require localization (how?)
- Goal: develop a scalable algorithm for PFF and conduct an OSSE to test this PFF algorithm in an simplified atmospheric model

Data Assimilation Research Testbed (DART)

DART is a open-source community software for ensemble DA, which includes interfaces to a variety of geophysical models and observation operators.



Case III – nonlinear and non-Gaussian obs



The core DA algorithm is based on the two-step ensemble filtering ^{b,c} framework:

$$p(\mathbf{x}|y) = \int p(\mathbf{x}, \mathbf{z}|y) d\mathbf{z} = \int \frac{p(y|\mathbf{x}, \mathbf{z})p(\mathbf{x}, \mathbf{z})}{p(y)} d\mathbf{z} = \int \frac{p(y|\mathbf{z})p(\mathbf{x}, \mathbf{z})}{p(y)} d\mathbf{z} \cdots = \int p(\mathbf{z}|y)p(\mathbf{x}|\mathbf{z}) d\mathbf{z}$$

a new variable "z" is introduced that satisfies

$$p(y|\mathbf{x}, \mathbf{z}) = p(y|\mathbf{z})$$

$$\begin{bmatrix} \mathbf{Examples of "z":} \\ 1 \\ z = H(\mathbf{x}) \\ 2 \\ z = \text{the "nontrivial" input variables to } H(\mathbf{z}_y) \end{bmatrix}$$

- A new algorithm for PFF (called PFF-DART) is proposed as follows (note $z = z_y$):
 - **1**st step: use the PFF to draw \mathbf{z}^i from $p(\mathbf{z}|\mathbf{y}) \sim$
- So $p(\mathbf{z}|y) = \frac{1}{N} \sum_{i=1}^{N} \delta(\mathbf{z} \mathbf{z}^i)$ and $p(\mathbf{x}|y) = \frac{1}{N} \sum_{i=1}^{N} p(\mathbf{x}|\mathbf{z}^{i})$
- 2^{nd} step: draw from $p(\mathbf{x}|\mathbf{z}^i)$ (can run in parallel)

We assume Gaussian $p(\mathbf{x}|\mathbf{z}^i)$ so the linear regression update is used to draw **x**, and the "increment localization" (the default in DART) can be naturally applied here.

Conclusions

- We develop an algorithm for the PFF in DART that can \bullet
 - 1) run in parallel for high-dimensional, spatially extended geophysical models
 - 2) efficiently apply the localization (via the existing DART modules) to reduce the sampling errors due to the small number of particles
- The PFF performs comparably to EAKF for linear and Gaussian observations, while the PFF outperforms EAKF for nonlinear and non-Gaussian observations.

References

- a. Hu, C.-C., and P. J. van Leeuwen, 2021: A particle flow filter for high-dimensional system applications. Quarterly Journal of the Royal Meteorological Society, 147 (737), 2352–2374.
- b. Anderson, J. L., 2003: A local least squares framework for ensemble filtering. Monthly Weather Review, 131 (4), 634-642.
- c. Grooms, I., 2022: A comparison of nonlinear extensions to the ensemble kalman filter: Gaussian anamorphosis and two-step ensemble filters. Computational Geosciences, 26 (3), 633-650.